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Abstract
TheNationalWeather Service of theUnited States uses the heat index—a combinedmeasure of
temperature and relative humidity—to define risk thresholds warranting the issuance of public heat
alerts.We use statistically downscaled climatemodels to project the frequency of and population
exposure to days exceeding these thresholds in the contiguousUS for the 21st centurywith two
emissions and three population change scenarios.We also identify howoften conditions exceed the
range of the current heat index formulation. These ‘no analog’ conditions have historically affected
less than 1%of theUS by area. Bymid-21st century (2036–2065)under both emissions scenarios, the
annual numbers of dayswith heat indices exceeding 37.8 °C (100 °F) and 40.6 °C (105 °F) are
projected to double and triple, respectively, compared to a 1971–2000 baseline. In this timeframe,
more than 25%of theUS by areawould experience no analog conditions an average of once ormore
annually and themean duration of the longest extreme heat index event in an average year would be
approximately double that of the historical baseline. By late century (2070–2099)with a high emissions
scenario, there are four-fold and eight-fold increases from late 20th century conditions in the annual
numbers of dayswith heat indices exceeding 37.8 °Cand 40.6 °C, respectively; 63%of the country
would experience no analog conditions once ormore annually; and extreme heat index events
exceeding 37.8 °Cwould nearly triple in length. These changes amount to four- to 20-fold increases in
population exposure from107million person-days per year with a heat index above 37.8 °C
historically to as high as 2 billion by late century. The frequency of and population exposure to these
extreme heat index conditionswith the high emissions scenario is roughly twice that of the lower
emissions scenario by late century.

Introduction

Formuch of the contiguousUnited States, the frequency of extreme heat events has been increasing since the
mid-1960s (Abatzoglou andBarbero 2014, Vose et al 2017) and the number of high temperature records has
outpaced the number of low temperature records, particularly since themid-1980s. Cities throughout the
country have experienced not onlymore frequent extreme heat over the last 60 years, but alsomore intense and
longer-lasting heat waves (Habeeb et al 2015), although themetric bywhich ‘heat wave’ is defined can influence
whether or not a trend is detectable (Shiva et al 2019). Trends in daytime heat extremes over the past century
across theUS show a lack of long-term trends (Peterson et al 2013a). Hypothesized reasons for the lack of longer-
term trends in heat extremes in theUS are tied to land-surface feedbacks thatmodify the ratio of sensible to
latent heatflux. For example, chronically dry land-surface conditions and higher Bowen ratios during the 1930s
Dust Bowl are hypothesized to have promoted strongerwarming of daytime temperature extremes acrossmuch
of the central US (e.g., Abatzoglou andBarbero, 2014), while increased cropland intensification across portions
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of theMidwest over the past half-century have reduced Bowen ratios and contributed to local cooling of daytime
heat extremes (Mueller et al 2017).

A growing body of work attributes both the trends in extreme heat aswell as specific extreme heat events to
the influence of anthropogenic greenhouse gas emissions (Diffenbaugh and Scherer 2013, Knutson et al 2013,
Knutson and Ploshay 2016). As anthropogenic greenhouse gases continue to accumulate in the atmosphere,
extreme heat is projected to becomemore frequent andmore severe for all parts of the country (e.g.Wuebbles
et al 2014, Vose et al 2017).

Extreme heat, defined broadly as conditions that are hotter and/ormore humid than is typical for a location
(CDC2019), is one of themost fatal natural hazards in theUS and poses grave risks to human health
(NWS2019a,Medina-Ramón et al 2006, Borden andCutter 2008, Anderson andBell 2011, Vose et al 2017).
Groups such as children (Xu et al 2012), the elderly (Anderson andBell 2011), and individuals with low socio-
economic status (Harlan et al 2013, Schmeltz et al 2015) are particularly susceptible to heat-related illness.
Recent studies have highlighted the importance of humidity in the occurrence of days with extreme heat stress
(Raymond et al 2017), butmost projections of extreme heat in theUShave relied heavily on temperature-based
projections (e.g. Peterson et al 2013a, 2013b,Habeeb et al 2015, Vose et al 2017). Those studies that do provide
projections of heat stress for theUS tend to usewet bulb globe temperature (e.g.Willett and Sherwood 2012,
Dunne et al 2013, Buzan et al 2015, Coffel et al 2018).

In contrast, the heat index (HI; also known as apparent temperature) combines temperature and relative
humidity to produce a ‘feels like’ temperature. TheHI serves as a primary basis for the issuance of heat advisories
by theUSNationalWeather Service (NWS) and has been correlated to heat-relatedmortality (Davis et al 2003).
While two known studies have assessed global-scale changes in theHI at low spatial resolution (Delworth et al
1999, Russo et al 2017), higher spatial resolution projections ofHI for theUS are absent from the literature.
Because the probability of extreme heat events is expected to increase with continued global temperature
increases (Karl andKnight 1997), understanding how the exposure of theUS population to highHI conditions is
projected to change is critical for developing strategies to help people and communities copewith and adapt to
extreme heat.

TheHIwas formulated to estimate how combinations of temperature and relative humidity feel to a ‘typical
adult human’ andwas intended to be valid for conditions that were ‘exceeded on less than 1%of the Earth’s
surface and for less than 1%of the time’ (Steadman 1979a, p 862). Beyond those conditions, at high temperature
and relative humidity, skin humidity levels can exceed 90%, it becomes difficult for the human body to cool itself
by sweating or to dissipate heat, and theNWSHI calculation becomes invalid (Steadman 1979a,Ostro et al 2009,
Sherwood andHuber 2010).We hypothesized that futurewarmingwould increasingly cause ‘no analog’
conditions that fall outside the range considered by Steadman (1979a) and theNWS.

In this study, we employ theNWSHI algorithm to construct dailyHI projections through the end of the 21st
century for the contiguousUS acrossmultiple climatemodels and two future emissions scenarios.We examine
changes in the occurrence of days whenNWSheat advisory and excessive heat warning conditions are exceeded
and evaluate the frequencywithwhich conditions fall outside the bounds of theNWS’s currentHI formulation.
We then combine the frequency of these highHI conditions with a range of population projections to evaluate
the change in population exposure to such conditions.

Methods

Data sources
DailymaximumHI valueswere calculated using daily temperature and relative humidity for the 2006–2099
period from18 statistically-downscaled climatemodels participating in theCoupledModel Intercomparison
Project Phase 5 (CMIP5; table S1).We also analyzed historical (1950–2005 and 1971–2000) simulations from
thesemodels and the griddedmeteorological dataset (1979–2012) used to develop the downscaled data
(Abatzoglou 2013). Datawere statistically downscaled to a spatial resolution of 4 kmusing training data from
Abatzoglou (2013) and theMultivariate Adaptive Constructed Analogs (MACA)method (Abatzoglou and
Brown 2012). Thismethod uses daily output provided directly byGCMs andmultivariate analog approaches for
spatial downscaling.MACA’s use of equidistant quantilemapping allows it to preserve changes in the
distribution of daily GCMoutput, thusmaking itmore likely to properly capture changes in themagnitude of
extremes than simpler bias correction procedures (e.g. Pierce 2015). Themodels used in this studywere chosen
because they provided dailymaximum temperature and dailyminimum relative humidity.

Method for calculating dailymaximumheat index
TheHI is typically calculated using instantaneous or hourly temperature (T) and relative humidity (RH)
data. Ideally,modeled projections ofHIwould do the same, as at least one study has shown that using
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non-instantaneousmodel output to calculate temperature-humiditymetrics can lead to overestimation of
0.5–1.0 °C (Buzan et al 2015). Given the importance of using a suite ofmodels to develop robust climate
projections (e.g. Zhao et al 2015) and the desire for high-resolution coverage of theUS, we sought to develop an
approach for calculating dailymaximumHIusing daily summaries provided by downscaled data such as
MACA. To determinewhether to usemaximum,minimum, or average T andRHdata to construct daily
maximumHI values, we calculated hourlyHI values for the year 2012—a year of exceptional heat formuch of
theUS (Peterson et al 2013b)—usingweather station data from five representative US locations (NCEI 2018). HI
calculations using Tmax andRHmin bestmatched the reported dailymaximumHI values (figure S1 is available
online at stacks.iop.org/ERC/1/075002/mmedia).We therefore used the daily Tmax andRHmin fromMACA
data to construct dailymaximumHI values.

Implicit in this choice is the assumption that T andRHare consistently inversely related and that that
relationship does not change in the future. Changes in atmospheric circulation—either short- or long-term—

could alter the temperature-relative humidity relationship in the future. Thismethod also assumes that biases of
using daily summary data rather than hourly data do not change substantially with time (Buzan et al 2015).
Studies have shown that bias-correctionmethods can alter to co-variability of variables used to calculate heat
stress (Buzan et al 2015, Im et al 2017). Additionally, some studies have highlighted the importance of employing
multivariate bias correction procedures to correct for changes in co-variance structure through time (e.g.
Cannon 2018). TheMACAdownscaling procedures explicitly consider daily Tmax andRHmin fromGCMs and
would be capable of reflecting any changes in co-variance under future climates, but do not explicitly employ
joint bias correction procedures for Tmax andRHmin.We evaluatedwhether the downscaling procedure
systematically affected our results by performing the same heat index calculations on the raw, non-bias-
correctedGCMdata that the downscaled data used as an input.

All HI calculations were performed using theNWSHI algorithms, which employ a regression that
operationalizes theHI values developed by Steadman (1979a) and several adjustments that account for relatively
extreme combinations of temperature and relative humidity (NWS2018, Rothfusz 1990; see supplementary
material). An assessment of differentHI algorithms determined that theNWS algorithmbest agreedwith the
values in Steadman’s originalmatrix (Anderson et al 2013).

Note that the Steadman (1979a) formulation of theHI is based on specific physiological assumptions.Wind
speed and solar radiation are not included in the Steadman (1979a, 1979b) formulation or theNWS algorithms
andwere therefore excluded in this study.However, both are known to have an effect onHI (Steadman 1979b,
Li and Bou-Zeid 2013).

Calculating daily heat index values and no analog conditions
WeuseMACAdata to calculate dailymaximumHI values for historical (1971–2000)midcentury (2036–2065)
and late century (2070–2099) time periods for the RCP4.5 andRCP8.5 emissions scenarios.When calculatingHI
values, we flag days when the combined Tmax andRHminwould lead to an out-of-rangeHI value.We hereafter
refer to such days as ‘no analog’ days (figure 1).

In addition to calculating the frequency of no analogHI days, we compute the number of dayswith a
maximumHI above two thresholds: 37.8 °C (100 °F; hereafterHI100+) and 40.6 °C (105 °F; hereafter
HI105+). These thresholds are based on theNWS’s general heat advisory guidance, which states that a heat
advisory should be issuedwhen theHI is expected to be 37.8 °Cor higher and an excessive heat warning should
be issuedwhen theHI expected to be 40.6 °Cor higher ( NWS2019b). The actual issuance of heat advisories or
warnings is at the discretion ofNWSoffices and is dependent on additional factors such as the duration and
seasonal timing of an anticipated heat event, geography, and local acclimatization to extreme heat. Additionally,
NWSoffices in theWesternUShave recently adopted an experimental ‘HeatRisk’ forecast that only considers
temperature (NWS2019c).

We tabulated the occurrence ofHI100+, HI105+, and no analog days for each of the downscaledmodels
fromApril throughOctober (figures S4–S6).We also calculated, for each year andmodel, the longest
consecutive number of days withHI100+ conditions to quantify changes in the duration of extreme heat events
lasting longer than one day. The number ofHI100+ days includes all days above theHI100+ threshold,
includingHI105+ and no analog days. Similarly, the number ofHI105+ days includes the no analog days. The
reported results reflect themulti-model unweightedmean of all 18models.

Evaluating the performance of theMACAdatawith respect to observations
TheMACAmethodology requires training historicalmodel data to an observational dataset. In this case, the full
historicalmodel period (1950–2005)was trained to the gridMET 1979–2012 griddedmeteorological
observation dataset (Abatzoglou 2013).We evaluated the bias of the downscaledmodel output inmatching
observations for the historical period by comparing themulti-modelmean number of days above our specified
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heat index thresholds, including the number of no analogHI days, and the equivalents for the gridMETdataset.
Because of the training procedure described above, we compare the 1950–2005model results with the
1979–2012 gridMET to provide the best statistical comparison.We also compare the 1971–2000 historical
model results to the 1979–2012 gridMET and the full historicalmodel period to evaluate the suitability of using
the 1971–2000 historicalmodel period as a baseline for comparison to future projections.

Population projections and regional aggregation
To evaluate the total exposure ofUS population toHI extremes, we employ three spatially explicit population
projections and a baseline population estimate for the year 2000. These previously published projections were
downscaled to a 1-km resolution and are consistent with the Shared Socioeconomic Pathways (SSPs; Jones and
O’Neill 2016, Gao 2017). The three projections we employ—SSP2, SSP3, and SSP5—capture a range of
population change scenarios that project an end-of-centuryUS population of 447million, 277million, and 664
million, respectively.We calculate person-days per year bymultiplying the average number of days ofHI
extremeswithin a 30-year time period by themodeled population for the decade nearest themidpoint of the
30-year period. This yields a spatially explicit assessment of population-weighted exposure to heat extremes
(Jones et al 2018).We aggregate our person-days per year results using regions defined by the fourthUSNational
Climate Assessment (USGCRP2018).

Results and discussion

Historical simulations andmodel bias
The climatological distribution ofHI100+, HI105+, and no analog days generally adheres to latitudinal,
maritime, and topographic patternswith the highest frequency of extremeHI days across the desert southwest,
southernGreat Plains and southeasternUS (figures 2(a)–(c)). Days exceedingHI105+ are exceedingly rare to
absent acrossmuch of theNorthwesternUS, IntermountainWest, andNewEngland.No analog days do not
occur outside of thewarmest reaches of the desert southwest, where there are currently up tofive no analog days
per year. These areas amount to less than 1%of the land area of the contiguousUS For the contiguousUS, the
mean number of days per year for the historical period is 13.6 forHI100+, 5.2 forHI105+, and zero for no
analog conditions. Combinedwith baseline population estimates, the exposure toHI100+, HI105+, and no
analog conditions amounts to 106.7million, 24.4million, and 0.08million person-days per year, respectively.

Comparable climatological summaries were found for the frequency ofHI100+, HI105+, and no analog
days between downscaled historicalmodel simulations and gridMETobservations (figure 2). The largest
differences were forHI100+ days, for which 11%of theUShas absolute biases exceeding three days per year.
Themodels tend to underpredict the number ofHI100+ days per year formuch of the central US. Less than 1%
of theUShad absolute biases exceeding three days per year forHI105+, and the number of no analogHI days
shows nominal bias. Results were similar when comparing climatologies based onmodel years 1971–2000 to

Figure 1.Procedure for calculating the heat indexwith different combinations of temperature and humidity. This procedure is based
onmethodology developed by theNationalWeather Service andRothfusz (1990). See supplementarymaterial for full regression and
adjustment equations.
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gridMET (figure S2), suggesting that using 1971–2000 as our historical baseline does notmeaningfully change
the results presented here.

Both quantitatively and qualitatively, the frequencies of highHI days between theMACAdata and raw, non-
bias-correctedCMIP5 data are similar. This indicates that bias correction in the downscaled data did not appear
to systematically over- or under-estimate projected changes inHI (figure S3). Previous studies have also found
similarlyminimal effects resulting frombias correction, in particular inmid- and high latitudes, where
temperature and humidity biases have a compensatory effect (Willett and Sherwood 2012, Fischer and
Knutti 2013, Zhao et al 2015, Im et al 2017).

Midcentury results
Acrossmost theUS, we find that the frequency and geographic range of high heat index days increasemarkedly
bymidcentury under bothRCP4.5 andRCP8.5 (figure 3). Country-wide, thewarming incurred between the late
20th century and themiddle of this centurywouldmore than double the number ofHI100+ days, triple ormore
the number ofHI105+ days, and cause no analogHI days inmore than 25%of the country by area. In this time
period, the differences between the twoRCP scenarios are relatively small but consistent, with RCP8.5 having
slightly larger increases inHI days thanRCP4.5.

Figure 2.Multi-modelmean for (a)HI100+days; (b)HI105+ days; and (c)no analogHI days per year fromhistoricalmodel
simulations (1950–2005).Multi-modelmeanminus gridMETobservations (1979–2012) for (d)HI100+ days; (e)HI105+ days; and
(f)no analogHI days per year.
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On a regional basis and for bothRCP scenarios, the Southeast and Southern Plains regions experiences the
largest increase in the number ofHI100+ andHI105+ days per year (figure 3, table 1).Within these regions,
states such as Texas, Louisiana, Oklahoma, Arkansas, and Florida that experienced 20 to 40HI100+ days per
year historically are projected to undergo roughly a doubling in the number of such days with either scenario.
The southernmost portions of Texas and Florida are projected to experience 100 to 150HI100+ days per year.
More limited areas—easternTexas, Louisiana, and south Florida—are projected to experience 50 to 100HI105+
days per year, afive-fold increase fromhistorical conditions.

The spatial pattern of these increases in the southern half of theUS is qualitatively similar to that identified by
a lower-resolution, temperature-only assessment of the number of days per year exceeding a temperature of
40.6 °C (100 °F) in scenarios where global average temperatures are 1.5 to 2 °C above 1986–2005 levels (Wobus
et al 2018) as well as in the rawGCMHIprojections identified by this analysis (figure S3). The changes exhibited
here are both larger andmore extensive than temperature-only assessments, possibly owing to the use of the heat
index rather than temperature alone.

High-altitude areas across thewesternUS that historically have noHI100+ days remained void of such
conditions in themid-21st century.However, lower-altitude regions that historically experience few to no
HI100+ orHI105+ days per year, such asNewEngland and the northernmostMidwestern states, are projected
to experience 10 to 20HI100+ days and up to 10HI105+ days per year bymidcentury.

No analogHI days becomemorewidespread bymidcenturywith bothRCP scenarios (figure 3).With
RCP4.5,much of the central US and southeast coastal regions are projected to experience up tofive no analogHI
days per year. In addition, parts of the SonoranDesert region are projected to experiencemore than 30 no analog
HI days per year. RCP8.5 yields notablymore no analog days thanRCP4.5 in this timeframe.

The longest consecutive number ofHI100+ days per year increases from a country-wide average of 3.2 days
per year historically to 6.2 days per year with RCP4.5 and 7.8 days per year with RCP8.5 (figures 4(a)–(c)). The
increased duration of theseHI100+ extreme heat events is particularly notable in the Southern Plains,
Southeast, and southernMidwest regions.

Depending on the trajectory of population and emissions increases, the country-wide number of person-
days per year increases four- to eight-fold forHI100+ conditions and 10- to 20-fold forHI105+ conditions by
midcentury (figure 5). In the Southwest, Southern Plains, and Southeast regions the combination of warming
and population growth results in approximately 3-fold, 4-fold, and 5-fold increases in the person-days of
exposure toHI100+ conditions, respectively, with either RCP scenario compared to late 20th century exposure.

Trends in the exposure toHI105+ conditions follow similar patterns, withmost regions projected to
experience roughly an order ofmagnitude increase in the number ofHI105+ person-days per year for themid-
21st centurywith either RCP and any SSP scenario.Whereas historically theUS experiences less than 100 000
person-days per year with no analog conditions, that would rise to 6.9 to 9.9million person-days per yearwith

Figure 3.Midcentury (2036–2065)multi-modelmean number of days per year with high heat index values. (a)–(c)HI100+, HI05+,
and no analogHI days per year for RCP4.5; (d)–(f)As for (a)–(c), but for RCP8.5.
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Table 1.Multi-modelmean number of days per year withHI100+, HI105+, and no analogHI conditions spatial averaged over each of theNCA regions.

Time period Scenario Threshold Midwest Northeast N. Plains Northwest Southeast S. Plains Southwest CONUS

Historical — HI100+ 5.7 3.3 2.7 1.2 14.9 20.9 22.7 13.6

Midcentury RCP4.5 HI100+ 21.8 9.7 8.0 3.2 51.5 51.3 21.6 30.4

Midcentury RCP8.5 HI100+ 29.8 14.3 11.8 4.3 65.0 61.4 24.3 36.4

Late century RCP4.5 HI100+ 26.7 12.4 10.3 4.0 59.5 56.8 23.6 34.2

Late century RCP8.5 HI100+ 53.1 32.3 24.3 10.6 95.8 88.1 35.3 54.0

Historical — HI105+ 2.6 1.6 1.6 4.5 7.3 13.4 0.0 5.2

Midcentury RCP4.5 HI105+ 11.7 5.2 3.7 1.4 27.0 29.8 17.4 18.5

Midcentury RCP8.5 HI105+ 17.4 7.7 5.7 2.1 39.5 39.0 17.2 23.9

Late century RCP4.5 HI105+ 15.3 6.8 4.8 1.9 34.3 34.7 17.5 21.9

Late century RCP8.5 HI105+ 37.6 19.7 14.0 4.8 72.9 65.5 21.9 39.7

Historical — No analog 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0

Midcentury RCP4.5 No analog 1.6 1.0 1.1 0.0 1.7 2.0 6.2 2.1

Midcentury RCP8.5 No analog 2.4 1.2 1.3 1.0 2.6 3.5 8.4 3.0

Late century RCP4.5 No analog 2.2 1.1 1.2 1.0 2.2 3.0 7.2 2.7

Late century RCP8.5 No analog 7.3 3.0 2.7 1.6 12.1 12.1 9.7 8.6
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RCP4.5 and to between 17.0 and 24.4million person-days per year with RCP8.5 depending on the SSP scenario.
The largest rise (for RCP8.5 and SSP5)would amount to 250 times asmany no analog person-days per year
comparedwith contemporary exposure (table S2). The increase in exposure is driven primarily by changes in
climate rather than population change: Even in the absence of population growth, country-wide exposure
increases three- to four-fold forHI100+ conditions and seven- to 10-fold forHI105+ conditions.

Late century results
By late century, there are large differences between theRCP4.5 andRCP8.5 scenarios. The following discussion
focuses on results with theRCP8.5 scenario as results for RCP4.5 are relatively unchanged from themidcentury.

Country-wide, with RCP8.5HI100+ days are projected to quadruple andHI105+ days to increase nearly
eight-fold in frequency compared to historical conditions.With this scenario 63%of the country’s area is
projected to experience no analog conditions, and 13%of the country would experience an average of twoweeks
ormorewith such conditions (figure 6). The total population exposure to no analog conditions is between 89.5
and 216.7million person-days per year while exposure toHI100+ days could exceed 2 billion person-days per
year depending on the SSP.

By late century, large portions of theGulf Coasts states—including Texas, Louisiana,Mississippi, Alabama,
and Florida—are projected to experience 120HI100+ days per year ormorewhilemore limited areas in Texas
and south Florida are projected to experience 150 ormoreHI105+ days per year. These results are in line with
publishedwork showing that heat waves of three ormore consecutive days with an apparent temperature of
40 °Cwould have a 90%–100%annual probability of occurring in this part of theUSwhen global average

Figure 4.Multi-modelmeanof the longest duration (in days)ofHI100+ conditions per year for (a)Thehistorical period (1971–2000);
(b)Midcentury (2036–2065)withRCP4.5; (c)Midcentury (2036–2065)withRCP8.5; (d)Late century (2070–2099)withRCP4.5; (e)Late
century (2070–2099)withRCP8.5.Meanvalues on eachpanel indicate the country-widemean lengthof the longest durationofHI100+
conditions per year.
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temperatures reached 4 °C above preindustrial levels, the amount of warming projected for late century under
RCP8.5 (Russo et al 2017).

Areas withminimal exposure toHI100+ orHI105+ conditions either historically or bymidcentury, such as
the PacificNorthwest and northernNewEngland, are projected to experience 10 to 20HI100+ days and up to
10HI105+ days per year by late century. Themean duration of the longestHI100+ event per year for the
country as awhole is 15.3 days—amore than four-fold increase fromhistorical conditions (figures 4(d)–(f)).
SouthernTexas and themajority of the state of Florida are projected to experience an average of 100 ormore
consecutiveHI100+ days per year in this time frame.

No analogHI days becomemuchmore frequent andwidespread, with portions of Texas, Louisiana,
Arkansas, andOklahoma projected to experience 20 to 30 days per year.Within theMidwestern region, entire
states—such as Iowa,Missouri, and Illinois—that historically have not experienced no analogHI conditions are
projected to experience between five and 20 such days per year.

Figure 5.Multi-modelmean person-days per year on a regional basis forHI100+ (top), HI105+ (middle), and no analogHI (bottom)
conditions for RCP4.5 (blues) andRCP8.5 (oranges)with SSP2. Black error bars show the interquartile of the 18 individualmodels.
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Wefind large increases in population exposure by late centurywith 1.4 billion, 988.9million, and 145.0million
person-daysper year ofHI100+,HI105+, andno analog conditions, respectively, forRCP8.5 and amoderate
population change scenario (SSP2).Withhighpopulation growth (SSP5), exposure ofHI100+ rises tomore than
2billionperson-days per year. As inmidcentury, however, the emissions scenario had a greater bearing on the
number of person-days per year than the population change scenario (figure 5; table S2).With the lower emissions
ofRCP4.5 aftermidcentury, changes betweenmid- and late century for this scenario areminimal.On thewhole,
withRCP4.5 the country is projected to experience half (or fewer) asmany person-days per yearwithhighHI
conditions aswithRCP8.5.

Themagnitude of the population exposure changes identified here is larger than that identified by studies of
temperature-only extremes. Using a population-basedmethod, Jones et al (2015) found a four- to six-fold
increase exposure to extreme temperature—rather than heat index—conditions in theUS by the end of the 21st
century. The larger increase in exposure that we projectmay result from the fact that the joint consideration of
temperature and humidity can result inmuch larger increases than the consideration of temperature alone
(Coffel et al 2018).

Our findings regarding the relative increase in population exposure betweenRCP4.5 andRCP8.5 are
consistent with previous studies. Although the lower spatial resolution of these studiesmakes themdifficult to
apply regionally within theUS as is done here, global population exposure to different heat extremes through
2100 has been shown to be reduced by at least 50%under RCP4.5 compared to RCP8.5 (Liu et al 2017,Mora et al
2017, Jones et al, 2018). These studies have similarly found that climate forcing associatedwith the choice of
emission scenarios had a greater bearing on the population exposed to heat extremes than population growth
scenarios.

Identifying the climatological processes responsible for the increases in the frequency of high heat index days
we identify is beyond the scope of this study.However, recent work examining changes in the frequency of
different types of extreme heat days (considering both temperature and humidity) in CMIP5 projections after
using amultivariate quantilemapping approach similar to theMACAmethodology finds that large-scale
warming, rather than changes in regional circulation, is the primary driver of future changes in extreme heat
(Schoof et al 2019).

Limitations
Given the sensitivity of human health to extreme heat and humidity conditions, the results of these studies
demonstrate that future climate change in the formof increasingly frequent extremeHI days will pose a growing
danger to humanhealth and that future population growthwill compound exposure (Kalkstein andDavis 1989,
Åström et al 2011, Gasparrini et al 2017).Moreover, with thewidespread increase in the number of no analog
days identified here, the currentNWS system forwarning theUS public about extreme heat conditionswill be

Figure 6.As forfigure 3, but for late century (2070–2099).

10

Environ. Res. Commun. 1 (2019) 075002 KDahl et al



insufficient for truly communicating risk. Additional heat stressmetrics and their sensitivities to changes in
temperature and humiditymay also be considered to better elucidate hazards to humanhealth (Sanderson et al
2017, Sherwood 2018).

There are several important considerations that limit the application of our results to a comprehensive
understanding of future heat stress. For example, we did not evaluate the dailyminimumheat index, which
influences heat-relatedmorbidity andmortality (Karl andKnight 1997, Basara et al 2010,Oleson et al 2015).
These projections do not incorporate the effects of future urban development or land-cover change that could
alter future heat extremes, nor do they assess how exposure will vary among vulnerable subpopulations.Human
adaptation or acclimatization to heat could reduce the overall risks associatedwith extreme heat exposure
(Medina-Ramón et al 2006, Sheridan et al 2009, Anderson andBell 2011, Sheridan and Lin 2014, Ebi et al 2018),
and the degree towhich acclimatization keeps pace with awarming climate and how such efforts are integrated
across socioeconomic groupswill be critical for determining themagnitude of heat related impacts.

Finally, furthermodeling efforts to improve our understanding of the use of dailymodel output data and the
assumption of constant co-variability between temperature and relative humidity, as well as dynamically
downscaled data that resolve both local circulation patterns and land-surface coupling, could advance the
applicability of these results.

Conclusions

This study shows that the frequency of and population exposure to extreme heat index conditions in theUSwill
increase substantially bymid-21st century under a range of emissions and population change scenarios. By late
century, depending on the scenario, these changes amount to a 4- to 20-fold increase in person-days per year of
high heat index conditions from107million historically to as high as 2 billion. The current extreme heat alert
systemused by theNationalWeather Service relies on specific heat index thresholds. This work illuminates how,
acrossmuch of the country, those seldom-crossed thresholds become frequently surpassed over the course of
this century, puttingmillions of people at risk.

Economic development, technological advances, and improved communication efforts have reduced heat-
relatedmortality in theUS in recent decades (Davis et al 2003). Given the future frequency and extent of
dangerous heat events, however, additional efforts to help people copewith extreme heat, particularly in places
unaccustomed to such heat historically, will likely become necessary.With late century extreme heat index
conditions and exposure under RCP8.5 being roughly double of that under RCP4.5, reductions in global
greenhouse gas emissions are a complementary strategy formanaging the future impacts of extreme heat in
theUS.
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